Product Description

 OEM manufacturer EM760 series VSD speed variators

Product Description

Three-phase AC  340V-460V  0.75kW-710kW

660V-690V  18.5kW-800kW

The EM760 series inverter is a high-performance vector control inverter launched by SINEE, which integrates the synchronous motor drive and asynchronous motor drive. It supports three-phase AC asynchronous motors and permanent magnet synchronous motors; drive control technologies, such as the improved vector VF control technology (VVF), speed sensorless vector control technology (SVC) and speed sensor vector control technology (FVC); speed output and torque output; Wi-Fi access and background software debugging; expansions such as I/O expansion cards, communication bus expansion cards and PG cards.

Features of the EM760 series Frequency Converter:
1.Standard built-in C3 filter to meet the high requirements of electromagnetic compatibility
2.Built-in DC reactor to reduce input current distortion and increase the power factor
3.Standard LCD panel, easy to operate
4.Integration of the permanent magnet synchronous motor / asynchronous motor / permanent magnet
synchronous reluctance motor / high-speed motor drive
5.Mainstream bus expansion cards: PROFINET, CANopen, EtherCAT
6.PG cards: OC, differential, UVW, resolver PG card, sine and cosine PG card

Product Parameters

 

Item Specification
Power supply Rated voltage of power supply Three-phase 340V-10% to 460V+10% 50-60Hz ± 5%; voltage unbalance rate: <3%
Output Maximum output voltage The maximum output voltage is the same as the input power voltage.
Rated output current Continuous output of 100% rated current
Maximum overload current G model: 150% rated current for 60s P model: 120% rated current for 60s (2kHz carrier; please derate for carriers above this level)
Basic control  Driving mode V/F control (VVF); Speed sensorless vector control (SVC) Speed sensor vector control (FVC)
Input mode Frequency (speed) input, torque input
Start and stop control mode Keyboard, control terminal (two-line control and three-line control),communication
Frequency control range 0.00~600.00Hz/0.0~3000.0Hz
Input frequency resolution Digital input: 0.01Hz Analog input: 0.1% of maximum frequency
Speed control range 1:50 (VVF), 1:200 (SVC), 1:1000 (FVC)
Speed control accuracy ±0.5% (VVF), ±0.2% (SVC), ±0.02% (FVC)
Acceleration and deceleration time 0.01s~600.00s/0.1s~6000.0s/1s~60000s
Voltage/frequency characteristics Rated output voltage 20%~100% adjustable, reference frequency 1Hz~600Hz/3000Hz adjustable
Torque boost Fixed torque boost curve, any V/F curve optional
Starting torque 150%/3Hz (VVF), 150%/0.25Hz (SVC), 180%/0Hz (FVC)
Torque control accuracy ±5% rated torque (SVC), ±3% rated torque (FVC)
Self-adjustment of output voltage When the input voltage changes, the output voltage will basically remain unchanged.
Automatic current limit Output current is automatically limited to avoid frequent overcurrent trips.
DC braking Braking frequency: 0.01 to maximum frequency Braking time: 0~30S Braking current: 0%~150% rated current
Signal input source Communication, multi-speed, analog, high-speed pulse, etc.
Input and output  Reference power supply 10.5V±0.5V/20mA
Terminal control power 24V/200mA
Digital input terminal 7 (standard configuration X1~X7) + 3 (extension card X8~X10)-channel digital multi-function inputs: X7 can be used as a high-speed pulse input terminal (F02.06 = 35/38/40); X1~X6 and X8~X10, totally 9 terminals that can only serve as ordinary digital input terminals
Analog input terminal 3 (standard configuration AI1 ~ AI3) + 1 (extension card AI4)-channel analog input: 1-channel AI1: support 0 ~ 10V or -10~ 10V, optional for selection by using function code F02.62; 2-channel AI2/AI3: support 0 ~ 10V or 0~ 20mA or 4~ 20mA, optional for selection by using function code F02.63 and F02.64 is optional; 1-channel AI4: support 0 ~ 10V or -10~ 10V, optional for selection by using function code F02.65
Digital output terminal 2 (standard Y1/Y2) open-collector multi-function outputs + 2 (R1: EA/EB/EC and R2: RA/RB/RC) relay multi-function outputs + 2 (extension card) (R3: RA3/RC3 and R4: RA4/RC4) relay multi-function outputs Maximum output current of the collector: 50 mA; Relay contact capacity 250VAC/3A or 30VDC/1A, with EA-EC and RA-RC normally open, EB-EC and RB-RC normally closed; RA3-RC3, RA4-RC4 normally open
Analog output terminal 2-channel (M1/M2) multi-function analog output terminals to output 0~10V or 0~20mA or 4~20mA, optional for selection by using function codes F03.34 and F03.35
Operation panel LCD display The LCD digital tube displays relevant information about the inverter.
Parameter copying Parameter settings of the inverter can be uploaded and downloaded for fast parameter copying.
Protection Protective Function Short circuit, overcurrent, overvoltage, undervoltage, phase loss, overload, overheat, overspeed, load loss, external fault, etc.
Use conditions Location Indoor, at an altitude of less than 1 km, free of dust, corrosive gases and direct sunlight
Applicable environment -10ºC to +50ºC, derating by 5% per 1ºC increase above 40ºC, 20% to 90%RH (non-condensing)
Vibration Less than 0.5g
Storage environment -40ºC~+70ºC
Installation method Wall-mounted, floor-standing electrical control cabinet, through-wall
Protection level Protection level Standard IP21/IP20 (remove the plastic cover at the top of the plastic case)
Cooling method Cooling method Forced air cooling

 

Installation Instructions

 


Company Profile

 

Application: General Transducer
Output Type: Triple
Principle of Work: Vector Control Transducer
Switch Mode: PWM Control
Main Circuit Type: Voltage
Voltage of Power Supply: Medium Voltage Variable-Frequency Drive
Customization:
Available

|

variator

How does the design of variators contribute to energy savings and reduced emissions?

Variators are designed with several key features and mechanisms that contribute to energy savings and reduced emissions. These design aspects focus on optimizing power transmission efficiency, reducing mechanical losses, and enabling better control over the powertrain. Here’s a detailed explanation of how the design of variators contributes to energy savings and reduced emissions:

1. Continuously Variable Transmission (CVT) Design:

Variators, particularly those used in CVTs, offer a continuously variable gear ratio, allowing the engine to operate at its most efficient speed for a given driving condition. Unlike traditional transmissions with fixed gear ratios, CVTs enable the engine to stay within its optimal power band, resulting in improved fuel efficiency. The continuously variable nature of CVTs ensures that the engine can maintain an optimal RPM (revolutions per minute) regardless of the vehicle speed, reducing unnecessary fuel consumption and emissions.

2. Friction Reduction:

Variators are designed to minimize friction and mechanical losses in the power transmission system. Friction reduction measures, such as the use of low-friction materials, improved lubrication systems, and optimized bearing designs, help to minimize energy losses during power transmission. By reducing friction, variators improve the overall efficiency of the powertrain, allowing more energy from the engine to be effectively transferred to the wheels or driven machinery, resulting in energy savings and reduced emissions.

3. Lightweight Construction:

The design of variators focuses on lightweight construction using materials that offer high strength and durability. By reducing the weight of variators, the overall weight of the vehicle or machinery can be reduced. A lighter vehicle or machinery requires less energy to accelerate, decelerate, and operate, resulting in improved energy efficiency. Additionally, lighter components in variators also contribute to reduced mechanical losses and improved overall system efficiency.

4. Efficient Power Flow:

Variators are designed to ensure efficient power flow from the engine to the wheels or driven machinery. They are engineered to minimize power losses during transmission, ensuring that a maximum amount of power is delivered to the wheels or machinery. By optimizing power flow, variators help to reduce energy waste and improve overall energy efficiency, resulting in energy savings and reduced emissions.

5. Advanced Control Systems:

Modern variators often incorporate advanced control systems that optimize power delivery and engine operation. These control systems continuously monitor various parameters, such as throttle input, vehicle speed, and engine load, and adjust the gear ratio accordingly. By precisely controlling the powertrain, variators help to minimize unnecessary fuel consumption and emissions. Additionally, advanced control systems can also facilitate regenerative braking and energy recovery, further enhancing energy savings and reducing emissions.

6. Integration with Hybrid and Electric Powertrains:

Variators are designed to integrate seamlessly with hybrid and electric powertrains. In hybrid vehicles, variators play a crucial role in efficiently transferring power between the internal combustion engine and the electric motor. They enable smooth transitions between different power sources, optimizing energy usage and reducing emissions. In electric vehicles, variators are often used in conjunction with single-speed transmissions to provide efficient power delivery from the electric motor to the wheels, contributing to energy savings and reduced emissions.

7. Compliance with Emission Regulations:

The design of variators takes into account emission regulations and standards imposed by regulatory bodies. Manufacturers ensure that variators meet or exceed these regulations by incorporating features that minimize emissions and improve fuel efficiency. This includes optimizing gear ratios for reduced fuel consumption, implementing efficient control systems, and utilizing technologies such as regenerative braking and energy recovery. By complying with emission regulations, variators contribute to reduced emissions and environmental impact.

In conclusion, the design of variators incorporates features that optimize power transmission efficiency, reduce mechanical losses, and enable better control over the powertrain. These design aspects, such as continuously variable transmission design, friction reduction, lightweight construction, efficient power flow, advanced control systems, integration with hybrid/electric powertrains, and compliance with emission regulations, contribute to energy savings and reduced emissions. By improving overall system efficiency and optimizing power delivery, variators play a significant role in achieving energy efficiency and environmental sustainability in vehicles and machinery.

variator

How do electronic or computer-controlled variators improve performance and efficiency?

Electronic or computer-controlled variators, such as electronically controlled continuously variable transmissions (eCVTs), play a crucial role in improving the performance and efficiency of vehicles. These advanced variators utilize electronic control systems to optimize power delivery, adapt to driving conditions, and enhance overall drivetrain efficiency. Here’s a detailed explanation of how electronic or computer-controlled variators improve performance and efficiency:

1. Precise Control of Gear Ratios:

Electronic or computer-controlled variators offer precise control over the gear ratios. The electronic control systems continuously monitor various parameters such as vehicle speed, engine load, throttle input, and road conditions. Based on this information, the control system adjusts the gear ratios in real-time to ensure optimal power delivery. This precise control allows the engine to operate within its most efficient range, maximizing performance and improving fuel efficiency.

2. Adaptive Power Delivery:

Electronic or computer-controlled variators have the ability to adapt the power delivery based on driving conditions. The control system can analyze various factors, including vehicle speed, acceleration, and driver input, and adjust the gear ratios accordingly. For example, during highway cruising, the variator can keep the engine at lower RPMs to achieve better fuel efficiency. In contrast, during quick acceleration or overtaking, the variator can provide maximum power by adjusting the gear ratios for optimal performance. This adaptive power delivery enhances both performance and efficiency.

3. Optimization of Powerband Utilization:

Electronic or computer-controlled variators optimize the utilization of the engine’s powerband. The control system continuously adjusts the gear ratios to keep the engine operating within its optimal RPM range, where it generates the highest torque and power. By utilizing the engine’s powerband effectively, the variator ensures that the engine operates efficiently in a wide range of driving conditions. This optimization results in improved drivability, responsive acceleration, and better overall performance.

4. Seamless Transitions and Smooth Shifts:

Electronic or computer-controlled variators facilitate seamless transitions and smooth shifts between gear ratios. The control system ensures that gear changes are executed rapidly and with minimal interruption in power delivery. Unlike traditional transmissions with fixed gear steps, electronic variators can adjust the gear ratios continuously and steplessly. This eliminates the noticeable gear shifts and associated power interruptions, resulting in a smoother and more comfortable driving experience.

5. Integration with Vehicle Systems:

Electronic or computer-controlled variators can integrate with other vehicle systems to enhance performance and efficiency. They can communicate with the engine management system, traction control system, and other electronic control units to optimize the overall drivetrain operation. For example, the variator can work in conjunction with the engine management system to adjust the engine’s operating parameters based on the desired power delivery. This integration ensures coordinated and efficient operation of various vehicle systems, ultimately improving overall performance and efficiency.

6. Enhanced Efficiency through Advanced Control Algorithms:

Electronic or computer-controlled variators utilize advanced control algorithms to optimize performance and efficiency. These algorithms take into account multiple inputs, such as vehicle speed, engine load, temperature, and driver behavior, to make intelligent decisions regarding gear ratio adjustments. The control system can continuously learn and adapt to individual driving styles, further improving efficiency over time. The use of advanced control algorithms allows electronic variators to achieve higher levels of efficiency compared to traditional mechanical transmissions.

7. Real-Time Monitoring and Diagnostics:

Electronic or computer-controlled variators offer real-time monitoring and diagnostics capabilities. The control system can monitor the health and performance of various components within the variator, as well as detect any abnormalities or potential issues. This allows for proactive maintenance and timely repairs, ensuring optimal performance and reliability. Real-time monitoring and diagnostics contribute to the overall efficiency and longevity of the variator.

In conclusion, electronic or computer-controlled variators improve performance and efficiency through precise control of gear ratios, adaptive power delivery, optimization of powerband utilization, seamless transitions, integration with vehicle systems, advanced control algorithms, and real-time monitoring and diagnostics. These advanced variators optimize power delivery, enhance drivetrain efficiency, and provide a smoother, more responsive driving experience, ultimately improving both performance and fuel efficiency.

variator

What is a variator, and how does it function in mechanical systems?

A variator is a mechanical device used in certain systems to provide variable speed or torque output. It is commonly found in applications such as belt-driven continuously variable transmissions (CVTs) and hydraulic systems. A variator allows for seamless and continuous adjustment of output speed or torque within a specific range, without the need for discrete gears or speed ratios. Here’s a detailed explanation of what a variator is and how it functions in mechanical systems:

A variator typically consists of two primary components: a driving element and a driven element. The driving element is connected to the power source, while the driven element is connected to the load or output. The two elements are linked together through a set of movable parts, such as adjustable sheaves, cones, or pistons.

The function of a variator is to vary the effective diameter or contact ratio between the driving and driven elements. By changing the effective diameter, the output speed or torque can be adjusted continuously. The specific mechanism employed by a variator depends on its design and application, but the basic principle remains the same.

In a belt-driven CVT variator, for example, the driving element consists of two variable-diameter pulleys connected by a belt. The pulleys have movable sheaves that can adjust their effective diameter. By changing the position of the sheaves, the belt rides at different points on the pulleys, effectively changing the gear ratio and allowing for continuous speed variation. When the driving pulley’s effective diameter increases, the belt rides higher on the pulley, resulting in a larger output speed. Conversely, when the driving pulley’s effective diameter decreases, the belt rides lower, resulting in a smaller output speed.

In hydraulic systems, a variator can be achieved through the use of adjustable flow control valves or variable-displacement pumps. By adjusting the valve position or pump displacement, the flow rate and speed of the hydraulic fluid can be varied, enabling precise control of the output speed and torque.

Overall, the variator’s function in mechanical systems is to provide a continuously variable output by adjusting the effective diameter, contact ratio, or flow rate. This enables smooth and seamless speed or torque variation without the need for discrete gears or speed ratios. Variators offer advantages such as improved efficiency, flexibility, and precise control in various applications, including automotive transmissions, industrial machinery, and hydraulic systems.

China Standard OEM Manufacturer Em760 Series VSD Speed Variators  China Standard OEM Manufacturer Em760 Series VSD Speed Variators
editor by CX 2023-12-12